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Overview

-Using ground sensors to overcome cloud cover

- Tracking smallholder crops using data fused 
time-series VI series of vegetation indices.

- Mapping smallholder crop management practices
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Background - Zambia

This project focuses on smallholder 
maize agriculture in Zambia.

Why?

- Existing partnerships
- Data access 
- Representative smallholder 

conditions
- Importance of Zambia regionally
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Zambia Agriculture Research Institute 
seminar on participatory plant breeding
Source: ZARI Facebook



Smallholder Agriculture

- Smallholder farms produce 20 - 
50% of global food supply. 
(Ricciardi et al. 2018)

- In sub-Saharan Africa (SSA), the 
most farms are< 2 ha. (Lowder et 
al. 2016)

- SSA projected to have increasing 
food demand and decreasing 
arable land (Ittersum et al. 2016)

Farm size distribution, sub-Saharan Africa 
(Lowder et al. 2016)
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Limitations to Monitoring Smallholder Agriculture

Data scarcity

- Cloud cover
- Variable management practices
- Small field size

Shorter track record

- New methods developed for industrial 
agriculture often in US

- Less financial interest in crop 
monitoring for smallholder agriculture
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Crop type mapping, 
Kenya/Tanzania. Jin et al. 2019



Trial sites - Zambia

- Trials sites use different 
maturity cultivars

- 2020-21. 4 trial sites with 2-3 
cultivars each.

- 2021-22. 1 trial site with 3 
cultivars x 3 fertilizer levels.
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Mark sensor in Zambia field trial



Additional sites - US

- About 50 Mark sensors installed in corn 
fields in CA, NE.

- 3 Mark sensors installed at Whittier Farms 
in MA, with weekly drone imagery.

US based sites provide additional training and 
validation data for model creation. 
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Mark sensor in Whittier Farms, MA



Data Fusion approach
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Existing data fusion methods

STARFM (Gao et al. 2006)

STARFM, STAIR (Luo et al 2018)

-Merge high frequency coarse sensor 
(MODIS) with less frequent, higher resolution 
(Landsat)

Time



Existing data fusion methods

STARFM (Gao et al. 2006)

Limitations:

- Still affected by cloud cover
- Medium res sensors are still too coarse 

for smallholder agriculture
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Existing data fusion methods

CESTEM 

- Integrates Landsat, 
Sentinel-2 imagery to 
create radiometrically 
consistent product at Planet 
resolution (~3-4 m, near 
daily) 

- Planet Fusion product 
recently released to public 
(March 2021)

CESTEM (Houborg and McCabe 2018)
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Existing data fusion methods

Limitations

- Cloud cover can still 
obscure imagery majority of 
time in cloudy regions (e.g. 
subtropical agriculture)

- Lacks integration of farmer 
management practices

- Not freely available
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CESTEM (Houborg and McCabe 2018)



time

This project’s approach 

- Use ground-based multispectral sensors that track 
crop growth (and measure VI’s) continuously

- Establish empirical relationship between 
satellite-based sensors and ground sensor VI

- Extrapolate model away from ground sensors

Sentinel-2 10 m
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Mark sensor 
observations



Scale (space)

Sentinel-2 grid (yellow), and 
Mark sensor footprint (red)
Whittier Farms, MA

- Ground sensor footprint (10 meter 
radius) is roughly equal to Sentinel-2 
resolution

- Mark sensor captures several rows of 
corn, but still a tiny percentage of field
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Scale (time)

NDVI observations
Sentinel-2 (yellow),
Mark sensor footprint (red)
Zambia field trial

- Mark sensors provide 
continuous coverage

- Sentinel-2 provides 
sporadic coverage, 
especially during 
greenup.
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Creating a transformation model

First, need to understand 
direct relationship between 
variables.

● Data cleaning
● Partial cloud effects
● Choice of VI
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Integrating multiple data sets

Questions:

● Date inconsistency
● Curve-fitting
● Model type

○ Regression?
○ Machine learning?
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Sentinel-1

Sentinel-2

Planet



Extrapolation

Extrapolation of model will first be tested 
on other Mark sites, using 
cross-validation.
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Mark sensors at Whittier Farms



Extrapolation

The transformation model will be trained 
on a subset of sensors and tested on 
the withheld sensors.

We also have data in smallholder fields 
in Kenya and Zambia from previous 
project.

In total, we have ~100 seasons of Mark 
data, but with gaps in some seasons. 
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TRAIN

TEST

Mark sensors at Whittier Farms



Identifying crop management practices

Zambia trials include 
cultivars of different 
maturities.

Goal is to create model 
that estimates 
management practices 
from VI curves
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Zambia trial fields.

Sentinel -2
 EARLY
 LATE

Mark
 EARLY
 LATE



Identifying crop management practices

Planting date

- When does curve 
reach x% of max 
NDVI? (Urban 2018)

Cultivar

- How long does curve 
take to reach peak VI?

Data hungry
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Zambia trial fields.

Sentinel -2
 EARLY
 LATE

Mark
 EARLY
 LATE



Downstream applications

- Evaluate policy interventions
- Yield variance analysis, 

(integration with crop modeling)
- Regional crop monitoring
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Dashboard for Mark sensor and 
precipitation monitoring, Zambia.



Importance of new sensors

Arable

- Ground sensors are valuable. Ability 
to accurately integrate them with 
satellite data allows for scaling.

Planet Fusion

- Can potentially address partial 
cloud/shadow conditions

This project will evaluate how these new 
data sets improve models.
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Planet Fusion product manual



Recent research

- New applications of 
Planet Fusion data

- BUT applications in the 
US, more challenging to 
apply in smallholder 
context
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Maize phenological stage mapping
Nieto et al. 2022



Recent research

- New applications of 
Planet Fusion data

- BUT applications in the 
US, more challenging to 
apply in smallholder 
context
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Integrating Planet Fusion data into crop 
models for earlier yield prediction.
Ziliani et al. 2022



Collaboration 

I would like to hear from you!

Especially if your interests include

- Smallholder agriculture in SSA
- Data fusion
- Mapping agricultural practices with remote 

sensing
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Thank you!

Michael Cecil

mcecil@clarku.edu
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