Exploring Spatial Unit Effect on Spatial Optimization

Seonga Cho, Alan T. Murray and Somayeh Dodge Department of Geography University of California, Santa Barbara February 27th

Outline

1. Spatial Optimization's Scale Issues

2. Continuous Space Location-allocation Problem

3. The λ Interval Heuristic Approach

4. Continuous Space Demand Problem

Scale in Spatial Optimization

- Scale issue is also important in multi-objective spatial optimization (Openshaw and Taylor 1981; Tong and Murray, 2012)
- Solutions were highly dependent on geographical units (Fotheringham *et al.*, 1995)
- Spatial unit is related to both facility location and demand
 - Facility location
 - Demand point

Introduction	Facility	The λ Interval Heuristic	Demand
--------------	----------	-------------------------------------	--------

Data

- UCSB Baseball team
 - Caesar Uyesaka Stadium
 - 2018-2019 season
 - 85 Batted balls (TrackMan radar system)
 - X, Y coordinates and expected values
- 3 outfielders with 90 ft coverage
- Access and coverage should be considered simultaneously

Discrete Approximation

 $\begin{array}{ll} \mbox{Minimize} & \sum_i \sum_j a_i d_{ij} Z_{ij} & => \mbox{Min}\\ \mbox{Maximize} & \sum_i \sum_{j \in N_i} a_i Z_{ij} & => \mbox{Ma}\\ \mbox{Subject to} & \sum_j Z_{ij} = 1 \ \ \forall i \\ & Z_{ij} \leq X_j \ \ \forall i, j \\ & \sum_j X_j = p \\ & X_j = \{0,1\} \ \ \forall j \\ & Z_{ij} = \{0,1\} \ \ \forall i, j \end{array}$

With specific unit grids (30, 20, 10, 6, and 3 ft.)

(Pirkul and Schilling, 1991)

=> Minimizing the weighted distance

=> Maximizing covered batted balls

Problem Formularization

Relaxation of the facility location condition

Minimize $\sum_{j=1}^{p} \sum_{i} a_{i} U_{ij} \sqrt{(x_{i} - X_{j})^{2} + (y_{i} - Y_{j})^{2}}$ -> Minimizing weighted distance *Maximize* $\sum_{i} a_{i} Z_{i}$ -> Maximizing covered batted balls

Subject to

$$s + M(1 - Z_i) \ge U_{ij} \sqrt{(x_i - X_j)^2 + (y_i - Y_j)^2} \quad \forall i, j$$

$$\sum_{j=1}^p U_{ij} = 1 \quad \forall i$$

$$U_{ij} = \{0,1\} \quad \forall i, j$$

$$Z_i = \{0,1\} \quad \forall i$$

 X_j, Y_j unrestricted in sign $\forall j$

Algorithm Overview

IntroductionFacilityThe λ Interval
HeuristicDemand

AAG 2022

The Effect of Spatial Unit

- Potential location of facilities affect the solution set
- Trade-off between fine scale spatial unit and computation time
- The value of continuous space concept

Grid size	3	6	10	20	30	Continuous space
Max cover (%)	90.26	89.43	89.14	87.01	88.63	90.27
Min distance (ft)	63.77	63.80	63.83	64.05	64.68	61.11
The number of solutions	17	27	12	5	3	14
Computation time	49.55 hours	8.03 hours	1.95 hours	13.2 minutes	5.5 minutes	56.2 seconds

IntroductionFacilityThe λ Interval
HeuristicDemand

The Effect of Spatial Unit

Compared to the current situation

- Nearing Pareto-optimal frontier
- Fine scale grid's trade-off

AAG 2022

Empirical Bayesian Kriging

- Interpolation of certain number of sample demand points
- Implying the uncertainties on demands
- EBK: kriging method which considers the uncertainty of semi-variogram estimation
- Standard errors and confidence intervals can be calculated
- Both prediction value and confidence intervals show spatial uncertainty

Continuous Demand Representation

• EBK predicted values

• EBK 95% confidence interval's range

Facility

Introduction

The λ Interval

Heuristic

Demand

Demand

Summary and Future Challenges

- Spatial unit affect spatial optimization's results
- MAUP happens on the performance of the model
- Continuous space can improve the performance of the problem
- The underlying uncertainty issues in demand interpolation

References

- Fotheringham, A. S., Densham, P. J., & Curtis, A. (1995). The zone definition problem in location-allocation modeling. *Geographical Analysis*, 27(1), 60-77.
- Openshaw, S. (1981). The modifiable areal unit problem. *Quantitative geography: A British view*, 60-69.
- Pirkul, H., & Schilling, D. A. (1991). The maximal covering location pro blem with capacities on total workload. *Management Science*, 37(2), 233-248.
- Tong, D., & Murray, A. T. (2012). Spatial optimization in geography. *An nals of the Association of American Geographers*, *102*(6), 1290-1309.

Discussion and Comments

