Scale Spectrum Regression Taylor Oshan^{1*} and Tyler D. Hoffman^{2*}

*denotes equal contributions ¹Department of Geographical Sciences, University of Maryland, College Park ²School of Geographical Sciences and Urban Planning, Arizona State University

Motivation

- Inference on the scale parameter
- Multiscale processes exist in a superposition of states
- Generalize and enhance BLISS (Stuber et al. 2017) via full scale inference

Stuber, Erica F., Lutz F. Gruber, and Joseph J. Fontaine. "A Bayesian Method for Assessing Multi-Scale Species-Habitat Relationships." Landscape Ecology 32, no. 12 (December 2017): 2365–81. <u>https://doi.org/10.1007/s10980-017-0575-y</u>

Intuition

- Traditional spatial analyses only allow for one scale to be considered
- Suppose there are five candidate scales. Then there are five possible combinations of those scales for analysis:
- Each scale is a larger spatial lag of X

I	II		IV	V
0	0	0	0 0	
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0

Intuition

If we interpret multiscale processes as existing in a superposition of single-scale processes simultaneously, then we get an infinite number of combinations:

I	Ш	111	IV	V
0	0	0.5	0.5	0
0	0.2	0	0.4	0.4
0.25	0.25	0.15	0	0.35
0	0.04	0.16	0	0.8
0.2	0.2	0.2	0.2	0.2
	:	:	:	:

Model Components

Data

Covariates

 $X \in \mathbb{R}^{N imes D imes M}$

Response

 $y\!\in\!\mathbb{R}^N$

Parameters Covariate effects $eta \in \mathbb{R}^D$

Scale parameters

$$\kappa \! \in \! \mathbb{R}^{M imes D}$$

Variance

$$\sigma^2 \!\in\! \mathbb{R}_+$$

Standard Normal Regression (OLS)

Exogenous spatial lag (SLX)

The Model

Experiments: Synthetic lattice data

Experiments: Synthetic lattice data

Experiments: Synthetic lattice data

		true	mean	std
covariate	parameter			
	κ_{11}	0.80	0.801253	0.006399
1	κ_{21}	0.10	0.102046	0.006473
	κ_{31}	0.10	0.096701	0.003178
	κ_{12}	0.25	0.252919	0.020719
2	κ_{22}	0.50	0.501428	0.017083
	κ_{32}	0.25	0.245652	0.006993

• If multiscale processes really do follow SSR's model, what information is lost when they are modeled using OLS or SLX?

Procedure:

- Fit to election data
- Generate predicted y values
- Fit OLS and SLX to those predictions

Goodness-of-fit statistic	OLS	SLX 1	SLX 2	SLX 3
R^2	0.8399	0.9856	0.9723	0.9736
AIC	2001.57	-4750.63	-2910.53	-3038.19
MSE	331.922	29.776	57.288	54.746

• Standard errors of the coefficients are all virtually zero

 $\kappa_5\!=\![0.01,\!0.02,\!0.94,\!0.02]$

Conclusion and Next Steps

- Thinking of spatial data as realizations from multiscale processes allows a different perspective on modeling scale
- Consider more applications and interpret the parameters in their contexts
- Generalize the model into SSL: Scale Spectrum *Learning* and introduce more perspectives on the model structure