Divergent patterns in yellow-cedar growth driven by anthropogenic climate change
Topics: Global Change
, Coastal and Marine
, Environment
Keywords: Dendrochronology, climate change, dendroecology, tree decline
Session Type: Virtual Paper Abstract
Day: Monday
Session Start / End Time: 2/28/2022 05:20 PM (Eastern Time (US & Canada)) - 2/28/2022 06:40 PM (Eastern Time (US & Canada))
Room: Virtual 6
Authors:
Vanessa M Comeau, University of British Columbia
Lori D Daniels, University of British Columbia
,
,
,
,
,
,
,
,
Abstract
The global rise in temperature and associated changes in climate have led to decline of forests around the globe, across multiple species and ecosystems. A particularly severe example of this is yellow-cedar (Callitropsis nootkatensis) decline along the coast of British Columbia (BC) and Alaska, where anthropogenic climate change has led to reduced insulating snowpack, leaving yellow-cedar roots vulnerable to thaw-freeze events, resulting in freezing damage to fine roots and water stress during the subsequent growing season. Yellow-cedar decline is complex, with the potential for freezing injury over multiple years and damage that can accumulate over time. On the islands of Haida Gwaii, BC, we found trees in various stages of decline, from long dead to currently declining, and multiple growth patterns at each study site. We conducted a principal component analysis and identified patterns of divergent growth and divergent response to climate among yellow-cedars within the same stands, across all sites. Including three distinct periods of an onset of growth decline (1960s, 1990s, 2000s). Yellow-cedars affected by decline were decreasing in growth and negatively associated with warmer drier winter conditions. Whereas, yellow-cedars not affected by decline were increasing in growth and positively associated with warmer growing season temperatures. The limiting factors for declining trees, warm dry winter conditions, are consistent with the hypothesis from the mainland that climate warming has led to root freezing. Our research highlights the need to consider multiple signals within a site that would be masked by a single site-level chronology.
Divergent patterns in yellow-cedar growth driven by anthropogenic climate change
Category
Virtual Paper Abstract
Description
This abstract is part of a session. Click here to view the session.
| Slides